Duct and Casing Design for Long Term Reliability

Tim Mallory, Air Advantage, Inc.
2013 APC / PCUG Conference, St. Louis, MO.
Discussion...

- Uses of Duct and Casing Structures
- Various ways in which ducts fail
- Structural Design
- Importance of stress and elastic design
- Implications of conveying velocity
- Effects of Thermal Gradients and Deformation
- Questions / Answer Sessions
Uses and Applications

* Equipment
 * Precipitators
 * Fabric Filters
 * Scrubbers

* Applications
 * Moving Gases
 * Transportation of Dust or other material
Duct Failures

- Localized overstress
- Broken welds
- Excessive Wall Flex
 - Fan Pulse
 - Thermal Movements
- Collapse of supporting structure
Structural Design

- Design Stress
- Allowable Deflection
- Plate Thickness (Corrosion allowance)
- Duct Supports
- Internal Duct Braces
Standard Design Stress

* Common Grades of Steel yield strength
 * Standard Hot Rolled Steel: 36,000 psi
 * High Strength Steel: 50,000 psi

* AISC suitable design factor (steady state)
 * Standard Hot Rolled Steel: 22,000 psi
 * High Strength Steel: 30,000 psi
Absolute Maximum Stress for any duct component…
<18,000 psi recommended. (no real code here)

Factoring for:
- Unusual areas or shapes
- Deflection of components
- Long term fatigue
Allowable Deflection

* AISC Code Deflection:
 * Structural Member \(L/180 \)
 * Support Cranes or Moving Equipment \(L/360 \)

* Deflection of Duct (Recommended)
 * General \(L/300 \)
 * Critical areas, or anywhere near a fan \(L/400 \)
 * Be careful of deflection changing critical clearances
Design Considerations

* Plate section deflection
 * <1-1/2 x Plate Thickness is a good general reference
 * Check rotational stress at welded joints and stiffeners
* Hybrid Girders (aka Walls)
 * Side walls do not flex vertically
 * This causes 1, 1, 1 sharing rather than 1, 2, 1 as in normal structures.
* Corner angles limit joint rotation
Corner Angles
* Methods
 * Pencil and Paper
 * Computer
Heavy Plate Uniform Load Calculations

- **a**: 120-in | Dist. Between Primary Stiffeners | By: ____________
- **b**: 48-in | Dist. Between Secondary Stiffeners | Date: ____________
- **l**: 120-in | Length of Primary Stiffeners | Project: ____________
- **\(a/b \)**: 2.5 | Stiffness Ratio | Primary Stiffeners: W8x15#
- **\(\beta \)**: 0.662 | Stiffness Coefficient | \(l_1 = 68.9 \text{-in}^4 \)
- **\(\alpha \)**: 0.122 | Stiffness Coefficient | \(r_1 = 3.95 \text{-in} \)
- **w**: 50-in/wg | Uniform Load | Secondary Stiffeners: C6@8.2#
- **t**: 0.3125-in | Thickness of Plate | \(l_2 = 13.1 \text{-in}^4 \)
- **E**: 29,106-lbf/in^2 | Modulus of Elasticity | \(r_2 = 2.34 \text{-in} \)

Plate Calculations

- **s**: \(\frac{\beta \cdot w \cdot b^2}{l^2} \) | Maximum Plate Stress
- **y**: \(\frac{\alpha \cdot w \cdot b^4}{E \cdot t^3} \) | Maximum Deflection of Plate

Primary Stiffener Calculations

- **\(M_1 \)**: \(\frac{w \cdot a \cdot l^2}{8} \) | Maximum Moment on Primary Stiffener
- **\(s_1 \)**: \(\frac{M_1 \cdot r_1}{l_1} \) | Maximum Stress on Primary Stiffeners
- **\(y_1 \)**: \(\frac{5 \cdot w \cdot a \cdot l^4}{384 \cdot E \cdot l_1} \) | Maximum Deflection of Primary Stiffeners

Secondary Stiffener Calculations

- **\(M_2 \)**: \(\frac{w \cdot b \cdot a^2}{8} \) | Maximum Moment on Secondary Stiffeners
- **\(s_2 \)**: \(\frac{M_2 \cdot r_2}{l_2} \) | Maximum Stress on Secondary Stiffeners
- **\(y_2 \)**: \(\frac{5 \cdot w \cdot b \cdot a^4}{384 \cdot E \cdot l_2} \) | Maximum Deflection of Secondary Stiffeners

- **s**: 28.203 Kip/in^2
- **y**: 1.325 in

- **\(M_1 \)**: 32.513 Kip-ft
- **\(s_1 \)**: 22.368 Kip/in^2
- **\(y_1 \)**: 0.293 in

- **\(M_2 \)**: 13.005 Kip-ft
- **\(s_2 \)**: 27.877 Kip/in^2
- **\(y_2 \)**: 0.616 in
Finite Element Analysis
Conveying Velocity

* 3500 feet per minute = Successful conveyance of most fly ash without accumulation in the duct work

* Higher velocity = cleaner duct + pressure drop + abrasive wear

* Sticky dust...not good
* Flat horizontal ducts...not good either
Well known and understood but still a constant cause of failures

Common Causes

- Temperature variation across flow
- Dust layers or fallout
- Inside vs. outside (poorly insulated areas)
- Connecting cold exterior structures to hot parts (see photo)
Thermal Gradients and Deformation

- Thermal limitations of material
 - Steel loses ~25% of its strength at 700°F
- Thermal expansion cannot be overcome
 - Stronger components make for higher stresses
- Change in static pressure due to temperature
 - Fans move volume
 - Pressure is determined by density
- Transport velocity is calculated at standard conditions since friction is determined by mass not volume
Questions and Answers...